Determination of time of death in forensic science via a 3-D whole body heat transfer model.
نویسندگان
چکیده
This study is focused on developing a whole body heat transfer model to accurately simulate temperature decay in a body postmortem. The initial steady state temperature field is simulated first and the calculated weighted average body temperature is used to determine the overall heat transfer coefficient at the skin surface, based on thermal equilibrium before death. The transient temperature field postmortem is then simulated using the same boundary condition and the temperature decay curves at several body locations are generated for a time frame of 24h. For practical purposes, curve fitting techniques are used to replace the simulations with a proposed exponential formula with an initial time delay. It is shown that the obtained temperature field in the human body agrees very well with that in the literature. The proposed exponential formula provides an excellent fit with an R2 value larger than 0.998. For the brain and internal organ sites, the initial time delay varies from 1.6 to 2.9h, when the temperature at the measuring site does not change significantly from its original value. The curve-fitted time constant provides the measurement window after death to be between 8h and 31h if the brain site is used, while it increases 60-95% at the internal organ site. The time constant is larger when the body is exposed to colder air, since a person usually wears more clothing when it is cold outside to keep the body warm and comfortable. We conclude that a one-size-fits-all approach would lead to incorrect estimation of time of death and it is crucial to generate a database of cooling curves taking into consideration all the important factors such as body size and shape, environmental conditions, etc., therefore, leading to accurate determination of time of death.
منابع مشابه
Numerical simulation of Laminar Free Convection Heat Transfer around Isothermal Concave and Convex Body Shapes
In the present research, free convection heat transfer from isothermal concave and convex body shapes is studied numerically. The body shapes investigated here, are bi-sphere, cylinder, prolate and cylinder with hemispherical ends; besides, they have the same height over width (H/D = 2). A Numerical simulation is implemented to obtain heat transfer and fluid flow from all of the geometries in a...
متن کاملHeat and Mass Transfer in Leather Drying Process
Leather manufacturing involves a crucial energy-intensive drying stage in the finishing process to remove its residual moisture. Determining drying characteristics of leather is vitally important so as to optimize the drying stage. This paper describes an analytical way for determination of the drying characteristics of leather. The model presented, is based on fundamental heat and mass tra...
متن کاملDepletion of Serotonin Synthesis with p-CPA Pretreatment Alters EEG in Urethane Anesthetized Rats under Whole Body Hyperthermia
Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Methods: Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) wh...
متن کاملDetermination of Clostridium perfringenes in liver of men and women cadaver after death as an indicator for postmortem interrval
Background: Most medical research that is used to better understand how post-mortem interventions are estimated requires an examination of the physico-chemical properties of decomposition and the effects that environmental factors have on the decomposition process. Microorganisms are unique in nature and occupy almost every habitat. These organisms, which reside in larger hosts, form complex po...
متن کاملHeat transfer enhancement in a spiral plate heat exchanger model using continuous rods
This study presents an innovative and simple way to increase the rate of heat transfer in a spiral plate heat exchanger model. Several circular cross-section rods, as continuous vortex generators, have been inserted within the spiral plate heat exchanger in the cross-stream plane. The vortex generators are located at various azimuth angles of α=30◦, 60◦, 90◦, and 120◦ with non-dimensional diame...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of thermal biology
دوره 62 Pt B شماره
صفحات -
تاریخ انتشار 2016